

Features and Benefits

Ideal for daily 3-dimensional cell culture applications. By simply using one of our 3D InsertTM-PS ready-to-use kits, you can turn an ordinary 2D monolayer cell culture into a novel 3D cell culture environment, which offers many extraordinary benefits you may never have realized before.

Pre-Sterilized and Ready-to-Use

3D InsertTM-PS scaffolds are prepackaged into wells of tissue culture plates, terminally sterilized using γ-radiation, and are ready to use for your convenience. Currently our PS Scaffolds are available in prepackaged tissue culture plates ranging from 6-well to 96-well plates.

100% Connectivity

3D Biotek's 3D precision microfabrication technology produces a well-defined fiber/pore size and ensures the reproducibility of the porous structure from batch to batch. The pores of the inserts are 100% open, making it easy for cells to be seeded throughout the porous scaffolds and for an efficient exchange of nutrient and cellular metabolic waste. This feature makes the products especially useful in conducting dynamic cultures where the medium can perfuse through the open porous structure.

Easy Imaging and Cell Growth Monitoring

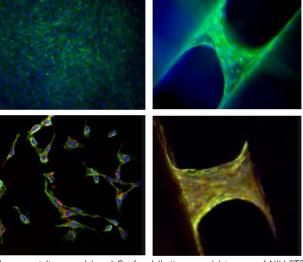
3D Insert[™]-PS scaffolds are made from polystyrene, the same material as the traditional tissue culture plates. The combination of transparency of the material and the porous structure design makes it possible to monitor cell growth under an inverted light microscope.

Mechanically Strong and Easy to Handle

3D InsertTM-PS scaffolds are mechanically strong and therefore very easy to handle.

Free of Animal-Derived Material

Scaffolds are made from 100% synthetic polymer with consistent quality to ensure experimental reproducibility from batch to batch.


Improved Cell Culture Efficiency

3D Biotek's scaffolds have increased surface area as compared to 2D cell culture plates. As a result, more cells can be cultured on our 3D Inserts than on the same sized cell culture dish/plate/flask/bioreactor.

Easy Separation of Cytokines and Growth Factors Secreted by Cultured Cells

Our 3D cell culture PS scaffolds will not absorb cytokines and growth factors. Therefore, secreted cytokines and growth factors can be easily separated or recovered from culture medium without extensive separation steps.

Cells Cultured on 3D InsertTM-PS

Fluorescent (top panels) and Confocal (bottom panels) images of NIH-3T3 cells cultured in 2D (left panels) and on 3D PS scaffolds (right panels). F-

actin filaments (green), Fibronectin (red), DAPI (blue)

Have Enhanced

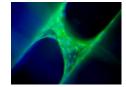
Cellular

Organization

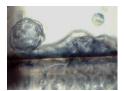
3D InsertTM-PS

Biotek

PS Catalog Numbers

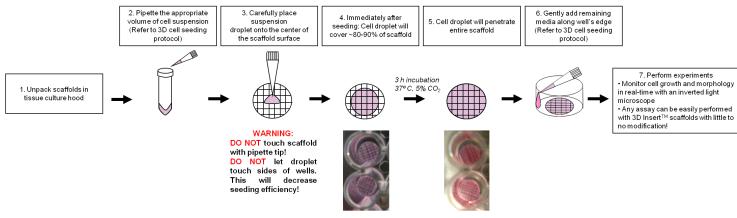

Catalog Number	Fiber Diameter (μ)	Pore Size (μ)	Size	PS Inserts in Package
PS152006-3	150	200	6-well	3
PS152012-6	150	200	12-well	6
PS152024-12	150	200	24-well	12
PS152048-16	150	200	48-well	16
PS152096-24	150	200	96-well	24
PS252012-6	250	200	12-well	6
PS304006-3	300	400	6-well	3
PS304012-6	300	400	12-well	6
PS304024-12	300	400	24-well	12
PS304048-16	300	400	48-well	16
PS304096-24	300	400	96-well	24

Storage: Opened plates containing scaffolds can be stored at room temperature in sterile conditions.


Seeding Protocol (available on www.3dbiotek.com/3dprotocols.aspx):

Nominal Cell Growth Area

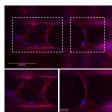
2D	3D Insert [™] -PS				
6 well					
9.6 cm ²	1520	54.0 cm ²			
	3040	52.1 cm ²			
12 well					
4 cm ²	1520	21.1 cm ²			
	3040	19.7 cm ²			
24 well					
1.9 cm ²	1520	10.2 cm ²			
	3040	9.6 cm ²			
48 well					
1 cm²	1520	4.3 cm ²			
	3040	3.8 cm ²			
96 well					
0.32 cm ²	1520	1.4 cm ²			
	3040	1.2 cm ²			


NIH-3T3 cells organize into 3D structures between PS fibers (F-actin: green, DAPI: blue).

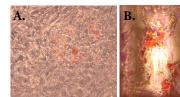
MCF-7 cells form aggregates and rounded cell structures on PS fibers and within pores (200x)

Average Thickness

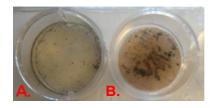
3D Insert [™] -PS		
1520	0.6 mm	
3040	1.2 mm	

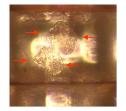


Related Products


Related Products	Size	Catalog Number
	6-well	TCP001006
Untreated tissue culture plates	12-well	TCP001012
	24-well	TCP001024
	48-well	TCP001048
	96-well	TCP001096
Treated tissue culture plates *not to be used for 3D cell culture	6-well	TCP011006
	12-well	TCP011012
	24-well	TCP011024
	48-well	TCP011048
	96-well	TCP011096

Average Diameter


3D Insert [™] -PS		
6 well	33.6 cm ²	
12 well	20.7 cm ²	
24 well	14.4 cm ²	
48 well	9.0 cm ²	
96 well	5.2 cm ²	


hMSCs deposit fibronectin matrix on PS fibers and naturally fill PS scaffold pores (Fibronectin: red, DAPI: blue).

Following adipogenic induction, differentiating 2D (A) and 3D (B) hMSCs were assayed with Oil-Red-O. hMSCs on 3D InerstTM-PS scaffolds showed larger and increased numbers of lipid droplets (100x).

Following osteoblastic induction, 2D (A) and 3D (B) cells were stained by Von Kossa assay at days 14. Osteoblastic cells on 3D InsertTM-PS scaffolds showed more mineralized nodule formation in 3D.

HepG2 cells form aggregates within scaffold pores (100x).

3D

PS

Osteoblastic cells form cell sheets to cover PS scaffold fibers and pores (100x).